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QUALITATIVE DISTINCTIONS IN THE SOLUTIONS

BASED ON THE PLASTICITY THEORIES WITH

THE MOHR–COULOMB YIELD CRITERION

UDC 539.374S. E. Alexandrov and E. A. Lyamina

The following two models of the plasticity theory are considered: the model with the Mohr–Coulomb
yield criterion and the classical model of the plasticity theory with a yield criterion independent of
the mean stress. The deformation problem of a plastic layer enclosed between two rotating plates is
studied.

Key words: semi-analytical solution, maximum friction, singularity, Mohr–Coulomb criterion,
plasticity.

The plasticity theories based on the Mohr–Coulomb yield criterion are used to describe the motion of granular
and loose materials and also deformation of some metallic alloys [1–4]. These models were reviewed in [4]. In the
case where the angle of internal friction vanishes, most of these models reduce to the classical theory of plasticity
with a yield criterion independent of the mean stress. The solutions of specific problems can, however, diverge
from the corresponding solutions based on the classical theory of plasticity, and the solutions obtained by different
models may differ qualitatively. In particular, this situation occurs if the law of the maximum friction is used.
Alexandrov [5] compared the solutions for two processes (flow of a material through an infinite plane convergent
channel and compression of a layer by two parallel rough plates) obtained by two theories of plasticity based on
the Mohr–Coulomb yield criterion: Spencer’s theory [2] and Hill’s theory. The equations of Hill’s model, which
generalizes to some extent the model of [1], were given in [4]. It was shown in [5] that the solutions corresponding
to these models differ qualitatively. However, the drawback of that paper was that the solutions constructed
failed to exactly satisfy all boundary conditions. The authors [6] considered the problem that involved the law of
the maximum friction and admitted a semi-analytical solution for Spencer’s model, which satisfies all boundary
conditions exactly. In that paper, the plane strain of a material compressed between rotating rough plates whose
surfaces obeyed the law of the maximum friction was studied. The solution of this problem was obtained in [7] using
Hill’s model, and it was shown that the solution constructed differs qualitatively from the solution given in [6]. In
contrast to [6] and [7], it is assumed in the present paper that the plates rotate in such a manner that their opening
angle increases. This modification in the formulation of the problem has a substantial effect on the qualitative
behavior of the solution for Hill’s model.

Figure 1 shows the geometry of the process. It is assumed that there is no outflow at point 0. We introduce
polar coordinates r and θ. Owing to symmetry, it suffices to construct the solution in the region θ � 0. The
boundary conditions at the axis of symmetry where θ = 0 are

σrθ = 0; (1)
v = 0. (2)

Here σrθ is the shear stress in the polar coordinate system. The plates rotate with an angular velocity ω > 0, as is
shown in Fig. 1. Therefore, the impermeability condition at the surfaces of the plates becomes

v = ωr for θ = θ0. (3)
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Fig. 1. Geometry of the process.

The opening angle of the plates θ0 depends on time. Since all the models considered are independent of the strain
rate, this angle can be used as an independent variable instead of physical time. At the surfaces of the plates,
the law of the maximum friction is specified, which is formulated below for each model of the material. In any
case, however, the mode of friction — adhesion or slipping — is unknown in advance. For adhesion, the boundary
condition (2) for θ = θ0 becomes

u = 0. (4)

The direction of the specific friction forces (see Fig. 1) is determined from the general considerations. Hence, we
have

σrθ > 0. (5)

The analytical form of the law of the maximum friction is specific for each model of the material. In the
classical theory of plasticity, where the yield criterion is independent of the mean stress, this law takes the form

τf = τsh. (6)

Here τf are the specific friction forces and τsh is the shear yield point. In the case of an ideal plastic material
with τsh = const, the use of the law of the maximum friction can lead to singular velocity and stress fields [8, 9].
Confining ourselves to plane strain, we reformulate the friction law (6) as follows: the tangent to the friction surface
(in fact, to a line for a plane flow) coincides with the characteristic direction of the system of static and kinematic
equations of the plasticity theory. In the case of classical plasticity, the characteristics are inclined at angles ±π/4
to the first (maximum) principal stress; hence, the friction law (6) for the problem considered is written as

ψ = π/4 for θ = θ0. (7)

Here ψ is the angle between the first principal stress and the r axis. According to law (7), the friction surface
coincides with a characteristic or an envelope of a family of characteristics. The singular solutions mentioned arise
if the friction surface is an envelope of a family of characteristics. It is worth noting that, in the theory of an ideal
plastic body, the characteristics of static and kinematic equations coincide.

The friction law in the form of Eq. (7) can be generalized to more complex material models. In particular,
for Spencer’s model [2], this generalization was proposed in [10, 11]. In this model, as in the theory of an ideal
plastic body, the characteristics of static and kinematic equations coincide. It is known [2] that these characteristics
are inclined at angles of ±(π/4 + ϕ/2) to the first principal stress (ϕ is the angle of internal friction). Thus, for
Spencer’s model, condition (7) should be replaced by

ψ = π/4 + ϕ/2 for θ = θ0. (8)
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Fig. 2. Directions of the principal stresses and characteristic directions at an arbitrary point for
ω > 0 (a) and ω < 0 (b).

It is known [12] that, if the friction surface coincides with an envelope of a family of characteristics, singular velocity
fields occur. The asymptotic behavior of the velocity field is the same as in the case of classical plasticity.

For Hill’s model, the characteristic directions of static and kinematic equations do not coincide. This
property is responsible for the fact that the solutions of the problem considered for ω > 0 and ω < 0 (see Fig. 1)
differ qualitatively from each other. The slopes of characteristics of static and kinematic equations with respect to
the direction of the first principal stress are determined by angles ±(π/4 + ϕ/2) and ±π/4, respectively. Figure 2
shows the directions of the principal stresses σ1 and σ2, which acquire this form owing to condition (5), and the
characteristic directions at an arbitrary point of the deformed region for ω > 0. As the axis of symmetry where
θ = 0 is approached, the direction of the stress σ1 becomes orthogonal to the r axis. Hence, we have

ψ = π/2 for θ = 0. (9)

This condition is equivalent to condition (1). As the friction surface where θ = θ0 is approached, the angle ψ
decreases and, as can be seen from Fig. 2, only the characteristic direction of the system of static equations can
coincide with the friction surface. Thus, the law of the maximum friction has the form (8).

Figure 2b shows the directions of the principal stresses, which acquire this form owing to the condition
σrθ < 0, and the characteristic directions for a material compressed between two plates (ω < 0) with the satisfied
equations of Hill’s model considered in [7]. In contrast to Eq. (9), the angle ψ tends to zero as the axis of symmetry
is approached. Moreover, the angle ψ decreases as the friction surface is approached, so that ψ � 0 in the deformed
region. Then, as one can see from Fig. 2b, only the characteristic direction of the system of kinematic equations
can coincide with the friction surface. Owing to this fact, the law of the maximum friction was written in [7] as
ψ = −π/4 for θ = θ0. For ω > 0, this law would have taken the form (7). As it follows from the solution obtained
below, this necessary difference in the formulation of the law of the maximum friction leads to qualitatively different
solutions. It is worth noting that this discrepancy does not occur in the classical theory of plasticity and Spencer’s
model since the characteristic directions for static and kinematic equations coincide. In these cases, a change of
sign of ω leads only to a change of sign of the limiting value of ψ on the friction surface.

For a plane flow, the system of equations of Hill’s model is written in polar coordinates as
∂σrr
∂r

+
1
r

∂σrθ
∂θ

+
σrr − σθθ

r
= 0,

∂σrθ
∂r

+
1
r

∂σθθ
∂θ

+
2
r
σrθ = 0; (10)

(σrr + σθθ) sinϕ+ [(σrr − σθθ)2 + 4σ2
rθ]

1/2 = 2k cosϕ; (11)

∂u

∂r
+
u

r
+

1
r

∂v

∂θ
= 0; (12)

sin 2ψ
(∂u
∂r

− u

r
− 1
r

∂v

∂θ

)
− cos 2ψ

(1
r

∂u

∂θ
+
∂v

∂r
− v

r

)
= 0, (13)
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Fig. 3. The value of m versus the opening angle of the plates θ0 for ϕ = 0.1 (1),
0.2 (2), 0.3 (3), 0.4 (4).

where σrr and σθθ are the normal stresses, v and u are the circumferential and radial velocities in the polar coordinate
system, respectively, and k = const is the adhesion coefficient. In the system given above, Eqs. (10) are the
equations of equilibrium, Eq. (11) is the Mohr–Coulomb yield criterion, Eq. (12) is the incompressibility equation,
and Eq. (13) is the condition of coaxial stress and strain-rate tensors. For ϕ = 0, system (10)–(13) reduces to
equations of the plane problem of the theory of ideal plasticity with k ≡ τsh. For k = 0, system (10)–(13) reduces
to equations of the model considered in [1]. The general solution of the static equations (10) and (11), in which ψ
is assumed to be independent of r, is [7]

σrr
k

= cot ϕ− rmΦ(ψ, θ0)
sinϕ

(1 − cos 2ψ sinϕ),

σθθ
k

= cot ϕ− rmΦ(ψ, θ0)
sinϕ

(1 + cos 2ψ sinϕ), (14)

σrθ
k

= rmΦ(ψ, θ0) sin 2ψ, Φ(ψ, θ0) � 0;

Φ = Φ0(m cos2 ϕ− 2 sin2 ϕ− 2 sinϕ cos 2ψ)m/2; (15)

∂ψ

∂θ
=
m cos2 ϕ− 2 sin2 ϕ− 2 cos 2ψ sinϕ

2 sinϕ (sinϕ+ cos 2ψ)
. (16)

However, the particular solution for ψ, which serves to determine the constant m, differs from that obtained in [7]
because of the boundary conditions (8) and (9). Integrating Eq. (16) with allowance for Eq. (9), we obtain

θ = 2 sinϕ

ψ∫

π/2

sinϕ+ cos 2z
m cos2 ϕ− 2 sin2 ϕ− 2 sinϕ cos 2z

dz. (17)

Substituting Eq. (8) into Eq. (17), we obtain the equation for m:

θ0 = 2 sinϕ

π/4+ϕ/2∫

π/2

sinϕ+ cos 2z
m cos2 ϕ− 2 sin2 ϕ− 2 sinϕ cos 2z

dz. (18)

Figure 3 shows the dependence of m on θ0 obtained from the solution of Eq. (18) for different values of the
angle of internal friction. It should be noted that, if m < 0 and the absolute value of this quantity is reasonably
small, a nonintegrable singularity appears in Eq. (18). Thus, the angle θ0 for m = 0 (Fig. 3) reaches the limiting
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values for which the solution obtained occurs. For large values of the angle θ0, one should introduce a rigid zone
adjacent to the friction surface, as it was done in [6]. In the present paper, however, it is assumed that the angle θ0
is smaller than the limiting value. It follows from Eq. (17) that dθ/dψ = 0 for ψ = π/4 + ϕ/2. Evaluating the
second derivative d2θ/dψ2, one infers that its sign at this point is opposite to the sign of m. In this case, as it
follows from Fig. 3, the condition d2θ/dψ2 < 0 holds for ψ = π/4 + ϕ/2 and the function θ(ψ) attains a maximum
at this point. Consequently, the continuation of the solution of Eq. (17) into the region ψ < π/4 + ϕ/2 makes no
physical sense, and Eq. (8) is the only possible law of the maximum friction. Determining m from the solution of
Eq. (18) and the distribution ψ(θ) from Eq. (17), one obtains the stresses in the deformed region from Eqs. (14)
and (15) up to a constant Φ0, which remains indeterminate as in other problems of this class.

We write the velocity field as

u =
ωr

2
dg

dθ
, v = −ωrg. (19)

Here g is an arbitrary function independent of r. The velocity field (19) satisfies the incompressibility equation (12)
for any function g. With allowance for Eqs. (8) and (9), the boundary conditions (2) and (3) become

g = 0 for ψ = π/2; (20)

g = −1 for ψ = π/4 + ϕ/2. (21)

Substitution of Eq. (19) into Eq. (13) yields

cos 2ψ
d2g

dθ2
− 2 sin 2ψ

dg

dθ
= 0. (22)

We introduce a new function

G =
dg

dθ
=
dg

dψ

dψ

dθ
. (23)

Inserting Eq. (23) into Eq. (22), using Eq. (16), and integrating the resultant equation, we obtain

ln
G

G0
= 4 sinϕ

ψ∫

π/4+ϕ/2

tan 2z (sinϕ+ cos 2z)
m cos2 ϕ− 2 sin2 ϕ− 2 sinϕ cos 2z

dz, (24)

where G0 is an arbitrary function of θ0. It follows from Eqs. (19), (23), and (24) that the quantity G0 is proportional
to the slip velocity of the material at the surface of the plates. Substituting Eq. (24) into Eq. (23), using Eq. (16),
and integrating, we obtain

g = 2G0 sinϕ

ψ∫

π/2

[ sinϕ+ cos 2x
m cos2 ϕ− 2 sin2 ϕ− 2 sinϕ cos 2x

× exp
(
4 sinϕ

x∫

π/4+ϕ/2

tan 2z (sinϕ+ cos 2z)
m cos2 ϕ− 2 sin2 ϕ− 2 sinϕ cos 2z

dz
)]
dx. (25)

Solution (25) satisfies the boundary condition (20). The quantity G0 is determined from Eq. (25) and boundary
condition (21) as

−1 = 2G0 sinϕ

π/4+ϕ/2∫

π/2

[ sinϕ+ cos 2x
m cos2 ϕ− 2 sin2 ϕ− 2 sinϕ cos 2x

× exp
(
4 sinϕ

x∫

π/4+ϕ/2

tan 2z (sinϕ+ cos 2z)
m cos2 ϕ− 2 sin2 ϕ− 2 sinϕ cos 2z

dz
)]
dx.

Numerical integration of this equation with the use of the solution of Eq. (18) yields the dependence of G0 on θ0
plotted in Fig. 4 for different values of the angle ϕ. The dependences of G and g on θ, which completely characterize
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Fig. 4. The quantity G0 versus the opening angle of the plates θ0 for
ϕ = 0.1 (1), 0.2 (2), 0.3 (3), 0.4 (4), and 0.5 (5).
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Fig. 5. Function G characterizing the radial-velocity distribution versus the angle θ for ϕ = 0.5 for
different stages of the process: θ0 = 10◦ (1), 15◦ (2), 20◦ (3), and 30◦ (4).

Fig. 6. Function g characterizing the circumferential-velocity distribution versus the angle θ for
ϕ = 0.5 for different stages of the process: θ0 = 10◦ (1), 15◦ (2), 20◦ (3), and 30◦ (4).

the velocity distribution across the layer by virtue of Eq. (19), are shown in Figs. 5 and 6, respectively, for ϕ = 0.5
(this value of the internal-friction angle is typical of many granular materials) for several stages of the process
(several values of the angle θ0). Since G0 �= 0, the adhesion condition (4) is not satisfied. This is one of the
qualitative distinctions of the present solution from the solution obtained in [7], in which the law of the maximum
friction written in stresses leads to satisfaction of condition (4) in velocities. At the same time, slipping occurs in
the solution based on Spencer’s model [6] if the law of the maximum friction is used. In this case, the velocity
field is singular: in polar coordinates, the shear-strain rate tends to infinity as the friction surface is approached.
For some parameters of the process, the velocity field is singular in the solution of [7] as well. We show that the
shear-strain rate in the solution obtained is finite as the friction surface is approached. Expanding the integrand
in (24) into a series in the neighborhood of the point ψ = π/4 + ϕ/2 and integrating, we obtain

G = G0 exp
[ 4
m

(
ψ − π

4
− ϕ

2

)2]
(26)

(the higher-order terms are omitted). The shear-strain rate ξrθ may tend to infinity if only d2g/dθ2 = dG/dθ → ∞
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as ψ → π/4+ϕ/2. Expanding the right side of Eq. (16) into a series in the neighborhood of the point ψ = π/4+ϕ/2,
from Eqs. (26) and (16), we obtain

dG

dθ
= −2G0 cot ϕ exp

[ 4
m

(
ψ − π

4
− ϕ

2

)2]
(27)

as ψ → π/4 + ϕ/2. Thus, it follows from Eq. (27) that the shear-strain rate is limited near the friction surface.
However, the stress state is singular since the derivatives of some components of the stress tensor with respect to θ
tend to infinity as the friction surface is approached. We consider, for example, the component σrr. Differentiating
Eq. (14) with respect to θ and replacing ψ by π/4 + ϕ/2 everywhere except for the factor dψ/dθ, we obtain

1
k

∂σrr
∂θ

= −4Φ0r
mmm/2 cosm−1 ϕ

dψ

dθ
. (28)

Expanding the right side of Eq. (16) into a series as ψ → π/4+ϕ/2, we write this equation near the friction surface
as

∂ψ

∂θ
= − m cosϕ

4 sinϕ (ψ − π/4 − ϕ/2)
. (29)

Integration of this equation with allowance for the boundary condition ψ = π/4 + ϕ/2 for θ = θ0 yields

ψ − π

4
− ϕ

2
=

( m

2 tan ϕ

)1/2

(θ0 − θ)1/2. (30)

Substituting Eqs. (29) and (30) into Eq. (28), we obtain

1
k

∂σrr
∂θ

=
Φ0r

mm(m/2+1/2)(2 tan ϕ)1/2 cosm ϕ
sinϕ (θ0 − θ)1/2

+ o[(θ0 − θ)−1/2]. (31)

Using the same reasoning, we find that the derivatives ∂σθθ/∂θ and ∂σrθ/∂θ tend to a finite limit on the friction
surface. It is worth noting that, for Spencer’s model, the behavior of the stress σrr near the surface of the maximum
friction discussed in [6] is the same as that predicted by Eq. (31).

Let us construct a solution using the theory of an ideal plastic body. It is necessary to set ϕ = 0 in Eq. (11).
The solution for stresses was obtained in [13] and is written in the notation adopted above as

σrr = k(σ + cos 2ψ), σθθ = k(σ − cos 2ψ), σrθ = k sin 2ψ,

σ = −A ln r − (A/2) ln ((A− 2 cos 2ψ)/B).
(32)

Here A and B are arbitrary constants and ψ is a function of the angle θ, which is determined from the equation
∂ψ

∂θ
=
A− 2 cos 2ψ

2 cos 2ψ
(33)

and has the form

θ = 2

ψ∫

π/2

cos 2x
A− cos 2x

dx. (34)

The lower limit of integration is chosen in such a manner that condition (9) is satisfied on the axis of symmetry.
Condition (7) should be satisfied on the friction surface. It follows from Eq. (34) that

θ0 = 2

π/4∫

π/2

cos 2x
A− cos 2x

dx. (35)

This equation determines the quantity A for a specified value of θ0. Equation (35) can be solved by a numerical
method, which is not required, however, for the goals of the present paper.

Equations (12) and (13) do not depend on ϕ. Therefore, the representation of the velocity field (19),
boundary conditions (20) and (21), Eq. (22), and substitution (23) are valid. Since the dependence ψ(θ) is given
here by Eq. (34), however, we obtain the following solution instead of solution (24):

G/G0 = (A− 2 cos 2ψ)/A. (36)
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Here G0 has the same physical meaning as in solution (24). Substituting Eq. (36) into Eq. (23), taking into account
Eq. (33), and integrating with allowance for the boundary conditions (20) and (21), we find that G0 = −A and

g = − sin 2ψ. (37)
Expanding the right side of Eq. (33) into a series in the neighborhood of the point ψ = π/4 and integrating

with allowance for the condition ψ = π/4 for θ = θ0, we obtain
ψ − π/4 =

√
A/2 (θ0 − θ)1/2 + o[(θ0 − θ)1/2]. (38)

This expression is similar to relation (30). We evaluate the derivative ∂u/∂θ. Using Eqs. (19), (37), and (38), we
write this derivative near the friction surface as

∂u

∂θ
= ωr

√
A

2
(θ0 − θ)−1/2 + o[(θ0 − θ)−1/2]. (39)

Since ∂u/∂θ enters the expression for the shear-strain rate ξrθ, it follows from Eq. (39) that ξrθ → ∞ as θ → θ0.
This is the principal distinction from the solution for ϕ �= 0. In the latter case, relation (27) implies that ξrθ tends to
a finite limit as θ → θ0. In both cases, however, the stresses behave identically. Calculating the derivative ∂σrr/∂θ
with the use of (32), (33), and (38), we obtain

1
k

∂σrr
∂θ

=
√

2A
(θ0 − θ)1/2

+ o[(θ0 − θ)−1/2],

which corresponds to Eq. (31). Using the same equations, one can calculate the derivatives ∂σθθ/∂θ and ∂σrθ/∂θ

and show that they tend to a finite limit as θ → θ0.
In summary, we can note that the solution obtained in [6] based on Spencer’s model has the same qualitative

specific features as the solution obtained for ϕ = 0.
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